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Abstract

Many studies on the acquisition of simple skills have
claimed that improvements in performance follow the
power law of practice. However, it is also well-known
that during long-term practice there are fluctuations such
as plateaus, slumps, and spurts. We analyzed a rela-
tively long-term learning process in a simple assembly
task to objectively examine fluctuations during the learn-
ing process. We first applied time-series analysis based
on the state space method to the task-completion time.
The analysis revealed that the power law of practice is
only a first approximation, and that fluctuations in the
learning curve reflected the long-term trends. Second,
we focused on one of the fluctuations, and carried out
microscopic analysis to find what generated the slumps
and breakthroughs. We found that, contrary to domi-
nant skill-acquisition models such as ACT-R (Anderson,
1993), the slump was attributable to the mismatch be-
tween the level of skill and the external environment that
the skill operates. This analysis suggests that, to fully
elucidate the processes and mechanisms of skill acqui-
sition, attention should be paid not only to the internal
mechanisms, but also to the external environment that
the skills operate.

Introduction
We improve skills by practice. The more we practice an ac-
tion, the less time it takes to carry it out. Our skills improve
greatly at the beginning, but the rate of improvement grad-
ually slows down. We cannot speed up action at a constant
rate. This phenomenon has attracted the interest of many re-
searchers. Some have focused on simple physical skills such
as card sorting and cigar rolling, while others have focused
on complex cognitive skills, such as addition, and geometry
proof (Crossman, 1959; Neves & Anderson, 1981).

Most researchers in this field generally agree that learning
curves follow the power law of practice. This law is expressed
as:

T = NPc,

whereT is the time to perform the task,P is the amount of
practice, andN is the time to perform the first trial.c is a neg-
ative number representing the learning rate. This law states
that the time to complete a task decreases in proportion to the
power of the number of trials.

If we draw a figure whose abscissa is the logarithm of the
number of practice and the ordinate is the logarithm of the
time to complete the task, we can obtain a straight descending

line. This log-log plotting nicely fits the layman’s observation
as well as data obtained from scientific research. First, the
execution time becomes faster with practice. Second, the rate
of speed-up gradually (logarithmically) decreases. We can
make marked progress in the initial stage, but such progress
can never be obtained in the middle or later stages.

Many theorists have tried to develop models of this phe-
nomenon. ACT-R proposes that the large amount of speed-
up in the early stage is the result of knowledge compilation,
and that the later improvement is due to knowledge tuning
(Anderson & Lebiere, 1998). The initial knowledge enabling
an action in ACT-R takes the declarative form. When do-
ing an action, this declarative knowledge must be interpreted
by domain-general productions. After several practices, how-
ever, the knowledge compilation mechanism transforms the
declarative knowledge to procedural. A production rule, i.e.,
a condition-action pair that is directly executed by the system,
is created during this process. Thus, knowledge compilation
dispenses with the laborious interpretation required at the ini-
tial stage, which largely reduces the time to execute an ac-
tion. Further practice tunes production rules by adjusting the
strengths of productions on the basis of the success probabil-
ity, the value of achieving the goal, and the cost of performing
the production.

SOAR provides a similar account of the learning curve.
SOAR’s chunking mechanism converts multiple cognitive
steps into a single production rule. Since small useful chunks
are likely to be created at the early stage, the time for the task
greatly reduces. However, the probabilities of new chunks be-
ing created gradually decrease as learning continues, which
leads to the slow speed-up rate.

Although ACT-R and SOAR provide coherent computa-
tional accounts of the power law, this kind of macroscopic
characterization conceals well-known facts in learning, i.e.,
plateaus, slumps, and breakthroughs. Anyone who has ex-
perienced extensive practice can remember periods where no
performance gains were obtained even after repeated prac-
tice. In some cases, performance may deteriorate to a certain
extent. Some people have fortunately had experiences with
breaking a seemingly lasting slump.

Kimura’s study (1999) provides valuable information
about this. Kimura analyzed learning curves obtained from
more than 10,000 times practices in origami (Japanese pa-
per folding). Subjects greatly reduced the time required to
complete the origami from several minutes at the beginning
to less than half a minute at the end. He found that there
were far more valleys and hills than theoretically estimated.
Furthermore, a detailed analysis revealed two important reg-
ularities. First, breakthroughs follow relatively long slump
periods. Second, after outstanding records are achieved, per-



formance often deteriorates. Kimura’s analysis as well as that
by Seibel (1963) suggest that fluctuations do not occur ran-
domly, but that fluctuations may be manifestations of some
important changes occurring in learning processes.

The second problem in the previous studies is that re-
searchers have not paid enough attention to the environment
where the actions are carried out. As far as motor skills are
concerned, they are not carried out mentally, but physically.
This means that skills presuppose a specific environmental
setting. In other words, skills are joint products of both in-
ternal mechanisms and the environment. Therefore, it is not
sufficient to only analyze internal mechanisms. We should
also analyze skills with respect to the environment where the
skills are demonstrated.

Thelen and Smith (1994) nicely showed this intertwined
nature of action. Whereas six-month-olds do not usually ex-
hibit the stepping reflex, they can perform alternate stepping
in the bathtub with water at waist level. This means that some
internal mechanisms presuppose specific environmental set-
tings. If an appropriate setting is not available, potentially
executable mechanisms cannot work well.

Since skill learning and motor development share many
features in common, we tentatively formulated a hypothesis
about slumps and breakthroughs. Slumps are caused by mis-
matches between developing internal mechanisms and envi-
ronmental settings. People refine and strengthen their internal
mechanisms by practice. However, environments that have
supported less developed skills may sometimes become inap-
propriate for more advanced skills, which results in slumps.
During further practice, people occasionally find appropriate
settings that then support the advanced skills they are devel-
oping, which leads them to breakthroughs.

The purpose of the present study was two-fold. First, we
examined whether learning curves involved components that
the power law of practice did not explain. To do this, we
applied the state space model to the time-series data obtained
from a simple assembly task.

Second, to identify sources of slumps, plateaus, and break-
throughs, we carried out microscopic analysis on a part of
learning where a slump and deterioration were followed by a
breakthrough. In this analysis, we focused on the interrela-
tion between internals and externals. We tried to find whether
mismatches were the main sources of slumps, and whether it
was crucial to reconfigure the environment to achieve break-
throughs.

Overview of experiment
Method
Subject: A female undergraduate student participated in the
study. She was paid 1000 yen per day. In addition, to encour-
age improvement, we told her that she would receive a bonus
if her best time spent on tasks on any day was 10% less than
that spent on a previous day.

Procedure: We provided her with a Lego block model. The
model roughly had three parts, i.e., a body and left and right
wings. The body consisted of three medium-sized blocks,
and each wing of short and long blocks. All the blocks were
of different colors.

We placed six short and medium, and three long blocks in
front of the subject. We told her to replicate the model by

assembling the blocks in front of her. The experimenter told
her to start and measured the time taken in each trial. Fifteen
trials constituted a session. After one session had finished,
the subject was given a one-minute break. This cycle lasted
until about an hour had passed. She continued this for twelve
consecutive days.

Results
The total number of trials amounted to 2325 (155 sessions)
in 12 days. The task completion time was 38.6 sec in the
initial trial, and decreased to 2.83 sec in the 2303rd trial on
the last day. The number of trials also indicated the subject’s
improvement. While she performed 135 trials within an hour
on the first day, she was able to perform 210 trials on her last
day.

The decrease in the task-completion time was remarkable
on the first day. It reduced from 38.6 sec to 12.59 sec within
the first session. The best time on the first day was 5.98 sec.
Thus, the subject reduced the task-completion time by about
32 seconds on the very first day. The rate of decrease becomes
more and more moderate during practice. The decrease was
about 1 sec on the second day, about 0.5 sec on the third and
fourth days, and 0.1 to 0.3 sec on the remaining days.

Since this pattern of change seemed to fit the power law, we
first employed the power law model. The relation obtained
between the task-completion time and the number of trials is
shown in Eq. (1) and Fig. 1.

yn = 28.08n−0.269, (1)

whereyn stands for the observed task-completion time for the
n-th trial.

Although the model may appear to fit the data, we carried
out more careful analysis to find systematic deviations from
the estimates by the power law of practice. We considered
a sequence of trials to be a plateau if the best time for any
given trial could not be improved over more than 50 trials. We
found 12 plateaus, whose length ranged from 58 to 606 trials
(the average was 164.2). This demonstrates that the power
law of practice is only a first approximation, and the learning
curve involves many plateaus.

Analysis with state space model
Typical approaches to estimating the trend, which repre-
sents long-term or macro movement in a time series, have
employed parametric-polynomial-regression or generalized-
linear-regression models. The quality of the estimates have
depended on the appropriateness of the assumed model. If
this is inappropriate, the model cannot be fitted to the data or
used to extract the essential structure of the data. The power
law model, a kind of generalized linear model, assumes that
the task-completion time will decrease monotonically with
the number of trials. Therefore, the increases in the task-
completion time are regarded as random errors.

However, this observation suggests that fluctuations around
the power law line are not fully random. Thus, it is necessary
to employ a model that treats fluctuations not as random er-
rors, but as essential components of time-series data. It is also
advantageous for the model not to require strong assumptions
about its class.
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Figure 1: Observed task-completion time, fitted power law model, and estimated trend

Of the many models available, we applied the state space
model (Kitagawa & Gersch, 1984). This model can capture
non-random fluctuations as trends of data with weaker as-
sumptions. We assumed the task-completion time of then-th
trial yn would be decomposed into a trend component,tn, and
an irregular component,wn, as

yn = tn +wn, (2)

wherewn∼N(0,σ2). Trend componenttn was assumed to be
a smooth stochastic process and satisfies Eq. (3).

tn = 2tn−1− tn−2 +vn, (3)

where vn ∼ N(0,τ2). This assumption is weaker than the
assumptions for polynomial and generalized linear models.
Therefore, the state space model can be used to estimate the
trend flexibly.

These models can be represented as a state space model
given by Eqs. (4) and (5).

xn = Fxn−1 +Gvn (4)

yn = Hxn +wn, (5)

where
xn = [ tn tn−1 ]t ,

F =
[

2 −1
1 0

]
,G =

[
1 0
0 0

]
,H = [ 1 0 ] ,

Qn = τ2,Rn = σ2.

The state,xn, can be estimated with the following Kalman
filter and smoothing algorithm if parametersσ2, τ2 are given.

The Kalman filter is used to estimate unobservablexn by pre-
diction based on the dynamics of the system (Eq. (4)) and by
filtering (adjustment) based on observation (Eq. (5)).

The specific computation for prediction is given by Eq. (6)
and that for filtering is given by Eq. (7)

xn|n−1 = Fxn−1|n−1
Vn|n−1 = FVn−1|n−1F t +GQnGt .

(6)

Kn = Vn|n−1Ht
n(HnVn|n−1Ht

n +Rn)−1

xn|n = xn|n−1 +Kn(yn−HFxn|n−1)
Vn|n = (I −KnHn)FVn|n−1.

(7)

Using the outputs of the Kalman filter, smoothed statexn is
estimated by

An = Vn|nF t
n+1V

−1
n+1|n

xn = xn|N = xn|n +An(xn+1|N−xn+1|n)
Vn|N = Vn|n +An(Vn+1|N−Vn+1|n)At

n

(8)

Parametersσ2, τ2 were estimated by the maximum like-
lihood method. The log-likelihood function of the model is
given as

`(θ) =−1
2
{ N log2π+

N

∑
n=1

logrn

+
N

∑
n=1

(yn−Hnxn|n−1)2

2rn
}, (9)

wherern = HnVn|n−1Ht
n + Rn. The parameters are obtained

by maximizing Eq. (9) with respect to these parameters.



The estimated trend component is plotted in Fig. 1. If the
learning process follows the power law of practice, the trend
component becomes identical to the power law line. How-
ever, the trend component fluctuates around the power law
line.

In contrast to the power law model, the state space model
can capture non-random fluctuations observed in the time-
series data. For example, there is a long plateau between 300
to 600 trials. In the 314th trial, the subject achieved the best
time but this was not broken until about the 500th trial. Fig-
ure 2 plots the observed data and estimates produced by the
state space model and the power law model. As is obvious
from the figure, estimates obtained by the power law model
monotonically decrease, while the state space model nicely
follows the observed data. In addition, the state space model
is not affected by one-shot flukes or bad luck.

These analysis revealed that, contrary to the prediction by
the power law model, the learning process involves a number
of plateaus and breakthroughs that follow. The state space
model can a give better description of the observed learning
curve.
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Figure 2: Observed task-completion time, fitted power law
model, and estimated trend at interval between 300-th and
600-th trials.

Microscopic cognitive analysis
We focused on a slump, a regression, and a breakthrough that
appeared from the middle of the third day to the fourth. Be-
fore proceeding to a detailed analysis, it might be of some
help to describe the general pattern in the subject’s assembly

Figure 3: Pattern for subject’s assembly of Lego.
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Figure 4: Slump, regression, and breakthrough observed on
third to fourth days.

of the blocks. As shown in Fig. 3, she first took and aligned
two wing blocks. Second, she connected the third block on
the top of the right wing, then the fourth block on the top of
the left wing. Finally, she constructed the head part by con-
secutively connecting the three blocks, and attaching this to
the center of the wing part. She did the task in this way from
the very beginning to the end of the entire training sessions.

The best times for the sessions were 4.3 to 4.4 sec in the
middle of the third day . This lasted for about 90 trials. How-
ever, in session 10 on the third day, the best time suddenly
increased to 4.8 seconds. This lasted for three sessions (45
trials). However, after this period of regression, the assembly
time suddenly decreased to less than 4 sec. As we can see
from Fig. 4, there are three distinct periods, the plateau (from
3-5 to 3-10), regression (from 3-11 to 4-1), and breakthrough
(from 4-2 to 4-6).

We measured the time it took to connect each block to iden-
tify where time was being reduced the most. This analysis re-
vealed that the most contributing part to the reduction of the
total assembly time was the one where the fourth block was
connected to the top of the left wing. During this period, the
time to connect this block decreased by 0.3 seconds. In addi-
tion, the fluctuation pattern for time in this part approximately
paralleled that of the total assembly time.

We did microscopic analysis on what happened when these
blocks were connected. Before the fourth block was con-
nected to the left wing, the subject held the left wing block
with her left middle finger. Then, she took the fourth block
with her right hand and connected it to the top of the left wing.
This caused trouble because her ring and little fingers were at
the very point where the fourth block was to be connected. To
avoid these difficulties, the subject employed two strategies.
The first was to bend her fingers, and the second was to open
them outward (See Fig. 5). Both strategies produced suffi-
cient space to connect the fourth block to the top of the left
wing.

The subject had mainly used the finger-bending strategy
from the beginning of practice. This strategy produced 80%
of the best times for the sessions, although she occasionally
used the finger-opening strategy as well. However, during the
regression period, she used the finger-opening strategy more



Figure 5: Finger-opening vs. finger-bending strategies.

Table 1: Proportions of finger-opening strategy (FOS) in
sessions and percentages of best times produced by finger-
opening strategy

% of FOS Min by FOS (%)
slump 11.4 26.7
regression 31.1 50
breakthrough 65.0 100

frequently. She used this strategy more than 30% of the trials.
In addition, it produced 50% of the best times in the sessions
in this period. Furthermore, in the breakthrough period, she
used the finger-opening strategy for almost two thirds of the
trials. All the fastest times in the sessions in this period were
produced when she used this strategy.

This microscopic analysis suggested that fluctuations in the
learning process can be accounted for in terms of strategy
competition. In the initial plateau, the finger-bending strategy
suited the subject’s level more for some reason. However, her
occasional use of the finger-opening strategy at the same time
produced the fastest time in several sessions. This might have
gradually led her to shift her strategy choice. Consequently,
the two strategies became competing. Generally, when more
than one strategy is simultaneously activated, the process is
disrupted. In this task, the subject had to choose one of the
two and adapt her actions before and after the strategy was
executed. This would be the main reason the assembly time
increased in the regression period. However, by being fre-
quently used, the finger-opening strategy would become more
sophisticated and automated. This was evidenced by the fact
that in the breakthrough period she mainly relied on and pro-
duced all the fastest times using this strategy.

It is important to note that neither strategy involved the
main action of connecting the fourth piece to the top of the
left wing. Rather, these strategies dealt with preparing an en-
vironment for the fourth block to be connected to the top of
the left wing. The subject’s little finger as well as her hand
constituted an environment where the main action was car-
ried out.

If the environment is suitably arranged, the main action

should be able to be carried out smoothly. Otherwise, it will
take longer to execute it.

Discussion
We aimed at examining whether deviations from the power
law of practice are random and at revealing the interrelation-
ship between skills and the environment in the present study.

A detailed analysis of the time series for the task-
completion time revealed that there were non-random devi-
ations from the power law. There were a dozen plateaus and
breakthroughs that followed. We then applied the state space
model to the time-series data. The analysis revealed that there
was a systematic trend component. A model with the trend
produced better estimates of the subject’s performance.

We next carried out microscopic cognitive analysis on a
process involving a plateau, regression, and breakthrough.
We found competition between the two strategies and shift
from one to the other during this process. The pattern of
shift was nicely correlated with the fluctuations in the task-
completion time. It is important to note that these strategies
worked in the background, so that the subject could rapidly
carry out her main action. Therefore, a shift in strategy should
be considered as a reconfiguration of the environmental set-
ting where the main action is performed.

Our analysis also revealed that slumps and regressions are
sometimes caused by mismatches between main actions and
the environment. When one wants to quickly connect a block
during an assembly task, what one has to do is not only to
bring it quickly to the connection point, but also to prepare the
setting where the action can be carried out swiftly. The prepa-
ration involves creating enough space to connect the block.
For our subject and her level of expertise at least, it was eas-
ier for her to open her fingers outward than to bend them. This
is why she shifted to the finger-opening strategy.

However, the shift required many things to be done. First,
one has to make the new strategy more sophisticated. Sec-
ond, it is also necessary to coordinate the strategy with the
actions carried out before and after. Finally, one has to in-
hibit a highly automated old strategy for the new one to work.
These are not easy tasks and they take time. This is why the



strategy shift was gradual rather than abrupt.
The lesson from this analysis is that to fully elucidate the

process and mechanisms of expertise, one should focus more
on the reconfiguration of the environment. Previous models
such as ACT-R (Anderson, 1993), SOAR (Newell and Rosen-
bloom, 1981), and component theory (Speelman and Krisner,
2005) have mainly dealt with actions that are directly con-
cerned with achieving tasks. But, since skills are joint prod-
ucts of both internal mechanisms and the environment, it is
important to synthesize the analyses of internals and exter-
nals.
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