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Abstract— Human problem-solving is enormously flexible.
This characteristic cannot easily be explained by the tradi-
tional framework base on the computer–metaphor. A series of
psychological experiments using an insight problem revealed
that multiple constraints operate simultaneously and make
continuous interplay with the external environment to generate
and modify representations, without central controls. These
results indicate that human cognitive system has emergent
nature and that a new framework is required to develop
flexible intelligent systems.

I. INTRODUCTION

We claim that the human cognitive system for problem-
solving has emergent nature. It is generative because it
always generates representations by combining fragmentary
representations and situational inputs. It is redundant be-
cause multiple processes concurrently operate background
to support or backup a dominant one. It is open because
continuous interplay with the external environment is its
basic functioning mode.

This paper examines these characteristics in the filed
of insight problem-solving. In the next section, we briefly
explain a traditional computer metaphor and point out
its limitation. In the remaining sections, we introduce a
model of insight problem-solving and show psychological
evidence supporting the model. Finally, we discuss model’s
emergent nature.

II. BEYOND COMPUTER METAPHOR

To understand the nature of cognition, cognitive science
has employed the computer metaphor as a basic research
strategy. This metaphor has provided researchers with the
rich sources for hypothesis generation, model construction,
and model validation. However, irrelevant assumptions have
been extrapolated that make it difficult to explain interesting
phenomena.

The first assumption is the stability or fixedness of
human representations. To have computers solve a problem,
programmers prepare a program in advance. In other words,
a complete set of procedures must be prestored beforehand.
This characteristic leads researchers to presume that human
problem-solvers should have a complete set of prestored
knowledge implemented in the forms of schemas and men-
tal models. However, it has revealed that schemas must have
a very complex structure even to solve a simple problem.
This makes it difficult to explain the process of schema
acquisition.

The second assumption is that a single set of programs
operate during problem-solving. Computers solve a problem
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by a set of programs relevant to the problem and halt
when they are not equipped with these programs. However,
people can deal with given situations without a complete
set of programs. People combine partially relevant pieces
of knowledge, or transfer knowledge in other domains to
deal with the situation. In addition, people can react to
unexpected information and flexibly switch the mode of
problem-solving, whereas computer programs are insensi-
tive to unexpected information and simply neglect it. This
suggests that human problem-solving is not characterized
as an application of a single set of programs, but as
simultaneous activation and interactions of multiple set of
programs.

The third assumption is about control. A set of computer
programs are controlled by its main routine. However, such
classical types of programs are unable to deal with the
real world, because the real world is so complex that
programmers cannot usually predict whole sequence of
events in advance.

The final assumption is about the interaction with the
external world. Programs are stored in a self-contained way
and usually operate without interacting with the external
environment. This requires programs to internally represent
all the changes in the environment in advance. This is
exactly the notorious “frame problem.”

In summary, many researchers implicitly have regarded
human problem-solving as the one where a single set of
fixed programs operate in a self-contained way without any
interactions with the external environment. This framework
makes it hard to explore creative and flexible nature of
human problem-solving as well as knowledge acquisition,
modification, transformation, and reorganization.

However, in 1990’s, new approaches were developed and
gradually spread over the cognitive science community.
They were promoted by situated cognition, evolutionary
psychology, neural network modeling, dynamical systems
approach, and cognitive neuroscience. Findings from these
shed light on the emergent nature of cognition.

III. INSIGHT PROBLEM-SOLVING

The new trend mentioned above has led many researchers
in the field of problem-solving to become aware of the
importance of creation. They began to analyze creative
problem-solving, such as insight, invention, conceptual
combination, scientific discovery, etc [2], [13], [19].

Among various types of creative problem-solving, insight
problem-solving has attracted many researchers’ attention
[14]. Although there are controversies about its definition,
insight is traditionally defined as the process by which a
problem solversuddenlymoves from a state of not knowing



Fig. 1. The T puzzle. Construct the shape of T, using four pieces in the
left side. The answer is shown in the rightmost.

how to solve a problem to a state of knowing ho to solve it
[9], whereas people gradually and incrementally approach
to the solution in standard problem-solving.

Insight has several mysterious properties. First of all,
problems used in psychological experiments on insight
are far from complex. Many subjects can understand the
solution immediately after they are taught. However, it is
awfully difficult to find it by themselves. We have used a
geometric puzzle, the T puzzle, as a material. Subjects were
told to construct the shape of T, using four pieces shown
in the left side of Fig.1. It first appears easy to solve it
and even young children can understand the solution once
it is provided. However, adult subjects usually spend 20–30
minutes to solve it without any experimental manipulations.

Second, people stick to wrong approaches and make
same errors again and again. When solving a standard
non-insight problem, people usually switch to a different
strategy or search another path after noticing failure. But,
they do not do so in insight problem-solving. Instead, they
repeatedly try wrong strategies that have proved to be
unsuccessful. In the case of the T puzzle, subjects typically
place the pentagon piece either horizontally or vertically to
the baseline and try to fill its notch by other pieces again
and again.

Third, there is a kind of readiness for making use
of crucial information. In the course of problem-solving,
subjects sometimes find crucial information accidentally.
But, they do not realize its value, especially when their
experience with a given problem is not enough. Kaplan &
Simon reported that subjects took more than 10 minutes to
solve an insight problem (mutilated checkerboard problem)
after they first mentioned about the crucial information [5].
A similar finding was obtained in our experiments using the
T puzzle. Even in the initial stage of their problem-solving,
subjects occasionally placed the pentagon piece correctly or
connected another piece properly. But, they canceled such
trials and went back to the wrong approach.

Finally, insight appears to come to problem solvers’
mind, suddenly. This means that conscious controls have
a weaker power on insight problem-solving than standard
ones. In her experiment, Metcalfe asked subjects to rate
periodically how close they felt to the solution of either
insight or standard problems. She found that subjects’
estimation was relatively accurate for the standard problem,
but not for the insight problem [10]. In solving the T puzzle,
subjects usually experience the same feeling. They reported

that they happened to solve it.
These mysterious properties prevent the standard frame-

work from providing a coherent account for insight
problem-solving.

IV. DYNAMIC CONSTRAINT RELAXATION

In order to explain these mysteries in a coherent way, we
have developed the dynamic constraint relaxation theory of
insight [3], [16]. This theory consists of three kinds of con-
straints (object-level, relational, and goal), and a relaxation
mechanism. The main idea is that initial impasses caused
by the object-level and relational constraints are detected
and evaluated by the goal constrain that gradually changes
the operation of constraints. We assume that failure-driven
incremental relaxation of the constraints is the basis for
insight problem-solving.

A. Constraints

We propose that there should be three types of con-
straints, object-level, relational, and goal, reflecting basic
components of problem representations.

a) Object-level constraint:The object-level constraint
reflects people’s natural preferences of how given objects
are encoded. There are numerous ways of encoding objects.
However, people have the strong tendency to encode objects
at their basic level. For example, a pen can be encoded
to be an object, artifact, stationary goods, writing utensil,
black pen, someone’s pen, someone’s black pen, etc. Among
numerous possibilities, people, by default, encode a pen to
be a pen. But, people may sometimes encode a pen at a
different level of the category hierarchy. This suggests that
there are many constraints to encode an object, and these
constraints have strength values reflecting the likelihood
to be activated. In the previous example, the constraint
to encode a pen to be a pen has a higher value than the
constraint to encode it as a writing utensil. The distribution
of the strength values of specific constraints constitutes the
object-level constraint.

In case of geometric puzzles like the T puzzle, the object
level constraint represents how a single piece should be
placed. Although there are numerous ways to place a piece,
people have the strong tendency to place it in a way that
its longest side is parallel or perpendicular to the base line
(the edge of the desk). When these constraints operate on
the pentagon piece, it leads subjects to an impasse. Note
that there are many other object-level constraints, as well.
Thus, the point here is that the constraints described above
has a higher strength value than others.

b) Relational constraint:The relational constraint re-
flects people’s natural preferences of how given objects
are related each other. Like encoding an object, there are
numerrous ways to relate objects in a given situation. For
example, a pen can be related to other objects in ways
that it is put on something else, it is rolled by something
else, it pokes something else, it is thrown by someone,
etc. Among many possible alternatives, it is more likely



that the people select the “writing” relation. But, people
may sometimes select other relations, depending on the
situation. This suggests that there are many constraints to
relate objects, and these constraints have different strength
values reflecting the likelihood of their activation.

In the geometric puzzle, the relational constraint is con-
cerned with the connection of pieces. Like the object-level
constraint, there is an infinite number of ways to connect
pieces. However, people prefer to connect them in ways
that connected pieces form a simple form. This constraint
is not, in itself, wrong. But if it is applied to the pentagon
piece, it leads to an impasse. In solving the T puzzle, people
try to fill the notch of the pentagon by another piece. It is
because they mistakenly suppose that resulting shape cannot
be simple if leaving the notch unfilled. However, this notch
must not be filled with others, as shown in the Fig.1. It
should be noted that, like the object-level constraints, there
are a number of constraints with different strength values.

c) Goal constraint: The goal constraint involves the
desired state and evaluation function. This constraint eval-
uates a match between current and desired states, and
gives feedback to the object-level and relational constraints
responsible for generating the current states.

In the geometric puzzle like the T puzzle, the goal
constraint is an image of the shape of “T” and an algorithm
computing the degree of mismatch between the current and
the goal state.

B. Relaxation

Since the initial strength values of irrelevant constraints
are much higher than the relevant ones, people mistakenly
encode and relate objects. In other words, the object-level
and relational constraints jointly operate to lead problem
solvers to an impasse.

When a problem-solving attempt results in failure, feed-
back provided by the goal constraint dynamically changes
the strength values of object-level and relational constraints.
Repeated failure sometimes dramatically change the distri-
bution of the constraint strengths. The strength values of
initially dominant constraints become lower, while those
of less dominant ones become higher. This increases the
selection probabilities of less dominant constraints, some of
which are crucial for solving the problem. When appropriate
constraints are accidentally activated at both object and
relational level, an insight comes to mind.

C. Algorithm

Our theory assumes that the object-level, relational, and
goal constraints are the distributions of the strength val-
ues of more specific constraints. Selection of the specific
constraints,cobj

i , crel
j , cgoal

k , follows the softmax algorithm
[1]:,
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where ht represents the strength value of the specific
constraint at the timet, β is a positive constant. Ifβ
approaches 0, every constraint is selected in the equal
probability (1/N ). If β approaches∞, the selection is
carried out in a winner-take-all fashion.

It is important to note that specific constraints are selected
probabilistically, which means that constraints with lower
strength values can be selected even in the initial stage of
problem-solving processes.

A set of specific object-level and relational constraints
constitutes one problem-solving trial. Trials are evaluated
by the goal constraint. The goal constraint producesErrors
by computing the degree of match between the current
state and the goal state. Based on theError, feedback is
provided to the constraints responsible for that trial. The
following algorithm is used for updating the strength value
of the constraints:

ht+1 ←− ht + ∆ht,

∆ht = γ
eβ∗hi

ΣN
j eβ∗hj

Error,

whereγ is a parameter representing the learning rate (0 <
γ < 1) andβ is the same as the one in the previous equation.
This algorithm updates the strength value of the specific
constraints being selected and does not change those of
unselected constraints. However, this update algorithm dy-
namically affects the probabilities of unselected constraints,
because the sum ofeβ∗Hi/ΣN

j eβ∗Hj equals to 1.
By repeated failures, this update algorithm decreases the

strength values of initially dominant constraints, which in
turn increases the selection probabilities of the relevant
constraints.

D. Summary

This model owes much to the findings in many fields of
cognitive science. First of all, we do not introduce insight-
specific mechanisms to the model. No researchers deny that
objects, relations, and goal are fundamental components of
problem-solving. The notion of constraint is widely used in
various fields of cognitive science, such as object recogni-
tion [18], cognitive development [8], analogical reasoning
[4], and so on.

We use the softmax as constraint selection algorithm.
Although this algorithm is not used quite often in problem-
solving literatures, it has two desirable features for modeling
human cognition. The first one is its probabilistic nature.
By adjusting β, the algorithm naturally represents the
probabilistic fluctuation widely observed in many cognitive



activities. The second feature is concerned with its statis-
tical normalization. Since the sum of the probabilities of
constraints equals to 1, a subtle change in one strength value
affects the selection probabilities of all the other constraints.

Although the model is in accord with the general nature
of human cognition, it is distinct from other models of
insight problem-solving. As mentioned previously, Gestalt
psychologists claim that an insightsuddenlycomes to mind.
In contrast, our theory proposes incremental relaxation of
constraints. We do not deny the sudden nature of insight
at the level of “consciousness.” However, data obtained at
the conscious level are not reliable and tell little about
underlying mechanisms [12]. According to our model, sub-
jective reports on suddenness may be concerned with the
probabilistic nature of constraint selection.

Most puzzling phenomena concerning insight is that
people neglect important information. Some researchers
reported it [5], [7], but their models do not provide a
coherent account for it. Our model explains it in terms of the
multiplicity of constraints. People may sometimes activate a
relevant constraint at either object-level or relational level.
However, to solve insight problem,both constraints must
be relaxed. Since the selection probabilities of dominant
but irrelevant constraints are quite high, there is little prob-
abilities that relevant constraints are activated at the both
level. This is the reason why subjects look over important
information accidentally generated.

It is interesting to contrast our theory with a similar view
proposed by Knoblich and his colleagues [6]. They have
proposed that initial impasses are caused by constraints and
its relaxation is crucial for insight. Although both theories
admit the key roles of constraint relaxation, there are crucial
differences between the two. First of al, constraints in their
theory are specific to the task they used and have no possi-
bilities to be applied to other types of tasks. Second, their
theory only emphasizes the constraint relaxation, but does
not involve any mechanisms of relaxation. Finally, their
theory does not assume any interactions with the external
environment. Therefore, they cannot explain phenomena
involving changes during problem-solving.

V. PSYCHOLOGICAL EVIDENCE

As described above, the theory is based on quite natural
assumptions used commonly in many problem-solving stud-
ies and a simple relaxation mechanism employed frequently
in reinforcement learning. But the theory provides coherent
explanations for various kinds of phenomena observed in
insight problem-solving. In this section, we show supporting
evidence obtained from a series of psychological experi-
ments, using the T puzzle as an experimental material.

A. Constraint

Our theory assumes that the irrelevant object-level and
relational constraint jointly operate to lead problem-solvers
to impasses. In the case of T puzzle, object-level constraints
initially dominant force subjects to place the pentagon

piece either horizontally or vertically. Actually, about 70-
90% subjects trials fall into this type. If subjects place the
pentagon piece in a way to conform to the object-level
constraint, a big problem arises to fill the notch of the
pentagon in order to make a simple shape. Subjects tried to
fill the notch by other pieces to make a simple form like a
bar at about 60% of their trials [16].

These results showed that subjects stick to applying
inappropriate constraints to the pentagon piece. However,
it should be noted that their fixation is not exclusive.
The fact that 70-90% (object-level constraint) and 60% of
the trials conformed to inappropriate constraints conversely
means that subjects selected the appropriate constraints in
10-30% (object-level) and 40% (relational) of their trials.
Such deviation can be observed even at the early period of
problem-solving processes.

In order to examine whether these constraints actually
obstruct problem-solving, we conducted two experiments
[11]. In one experiment, we provided one group of sub-
jects with the hint not to place the pentagon piece either
horizontally or vertically. This hint prevents the object-
level constraint initially dominant from being selected. In
another experiment, we provided subjects with the hint not
to fill the notch of the pentagon. This hint is expected
to prevent subjects from using inappropriate relational
constraints. Both manipulations greatly improved subjects’
performance. Seven out of 9 subjects in the object-level
hint condition and 7 out of 8 subjects in the relation-
hint condition could solve the puzzle within 15 minutes,
while about 20 % subjects could do so without the hints.
Other dependent variables such as the solution time, the
number of trials, etc., showed the same patterns. These
results strongly support our claim that a set of initially
dominant but inappropriate constraints forms obstacles for
insight.

B. Relaxation

Although many models of insight problem-solving in-
volve the mechanisms explaining initial impasse, few have
proposed detailed mechanisms concerning how and why
impasses are overcome1.

Our theory proposes that initially dominant constraints
are gradually relaxed by repeated failure. If it is correct, sub-
jects should use non-standard constraints more frequently
in the later phases of their problem-solving. To analyze
the time-course differences of the use of non-standard
constraints, we divided problem-solving processes into four
phases, based on the number of the trials. Tab. I showed
the results of the analysis. Although the increase of non-
standard constraints was not statistically significant in the
relational level2, the selection of non-standard constraints
increased dramatically at the object-level (F (3, 48) =

1An exception is MacGregor and his colleagues work [7].
2The lack of an increase in the number of the relational constraint

violations might be due to the fact that the template sheet relaxed the
relational constraint from earlier stages.



TABLE I

THE PERCENTAGES OF SEGMENTS VIOLATING THE OBJECT-LEVEL AND

RELATIONAL CONSTRAINTS.

1/4 2/4 3/4 4/4
Object-level constraint (%) 6 19 13 46
Relational constraint (%) 40 41 47 47

7.89, p < .001). Pair-wise comparisons revealed that the
violations of object-level constraints in the final phase was
more frequent than the others [15].

According to our theory, not only failure but its evaluation
by the goal constraint plays a crucial role to get an insight.
Trials are evaluated by the goal constraint that computes the
degree of failure. If so, insight problem-solving should be
facilitated when the goal constraint operates effectively. In
one experiment, a group of subjects were given a template
sheet printed with an image of a constructed “T,” and
asked to cover the image by placing the pieces [17]. We
expect that this manipulation should facilitate the evaluation
of the (mis)match between a current state and the goal.
As expected, these subjects solved the puzzle significantly
faster than those without the template sheet. More than 70%
of the subjects with the template sheet solved the puzzle
within 5 minutes, whereas those without the template sheet
could not solve it within 15 minutes.

Another experiment examined the function of the goal
constraint in a different way. As mentioned above, subjects
occasionally place the pentagon piece properly even in
the initial phase of their problem-solving. However, these
attempts do not directly lead subjects to an insight. Instead,
they neglect the important information to be obtained from
such placement and get back to the starting point. Why
cannot they solve the puzzle immediately after placing the
pentagon piece properly? The difficulty may be concerned
with matching. Only 20% of the pentagon’s sides appear
in the outline of the “T” because its longest and second
longest sides are placed inside the “T.” Thus, even when the
pentagon piece is placed properly, it is difficult to realize
which part of the “T” it occupies. To increase the ease of
matching, we physically transformed each piece. This trans-
formation increased the exposure rates of the pentagon’s
sides to 23% and 29%. This manipulation greatly facilitated
subjects’ performance. Five out of 8 subjects in the 23%
condition and 6 out of 8 subjects in the 29% condition
could solve it within 15 minutes, whereas no subjects in
the control condition solve it. Fig.2 shows how the use of
non-standard constraints changed during problem-solving.
Subjects in the 23% and 29% conditions used non-standard
constraints more often even in the initial phase. Its rates
increase gradually at the second and/or third phase and
become quite high at the final phase. In contrast, the rate is
low at the beginning and does not change significantly in
the control group.

VI. DISCUSSION

In the first half of the paper, we claim that the human
cognitive system has emergent nature. Unlike computer
programs, humans construct knowledge online from many
pieces of knowledge simultaneously activated, by interact-
ing with the external environment. In the following sections,
we introduced a theory of insight problem-solving and
showed psychological evidence supporting the theory. In
this section, we will consider the theory and its evidence in
terms of what is mentioned in the first part of the paper.

The human problem-solving system is not tuned to solve
insight problems, in advance. Instead, it uses multiple con-
straints representing the common sense by default. Although
these constraints operate effectively in everyday situations,
they work negatively in insight problem-solving. However,
people sometimes gain insights. Why is it possible?

The first reason is concerned with multiple and redundant
nature of constraints. Humans does not follow a single con-
straints, even when one constraint appears to be dominant.
There are always several constraints, some of which are
similar, dissimilar to, and even competing dominant con-
straints. Since the softmax is used for constraint selection,
constraints with lower strength values have chance to be
activated.

The second reason why people can solve problems cre-
atively is concerned with interaction between constraints.
The strength values of the responsible constraints are al-
ways updated by complex interaction between constraints.
Initially dominant constraints become weaker by repeated
failure they produce. In addition, less dominant constraints
occasionally become active, which increases its strength
values, at the same time decrease the selection probabilities
of dominant ones. These complex interactions between
constraints continuously change the strength distribution.
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Important to note, these changes are enabled by the fact
that the human problem-solving system interacts with the
external environment. As shown in the experiment using the
template sheet, people solve the T puzzle more efficiently
when the goal constraint is represented externally. Why? A
possible reason might be that the externalization matches
with the basic mode of functioning of the human problem
solving. In human problem-solving, a small fragmentary
constraint operates and produces a partial output. Then, an-
other constraints reacts to the output, and produces another
partial output, and so on. In addition, the strength values
are updated always with reference to the output externally
provided. In this sense, human problem-solving is based
on continuous interplay with the external environment. In
other words, the human problem-solving system is designed
to continuously interweave the external information into it.
This interplay may be enhanced by externalizing the goal
constraint.

In summary, human constraints are always changing
during problem-solving, due to the interaction with the
external environment. This can be regarded as fluctuation
that is important for self-organization. Although dominant
constraints constitute an attractor (impasse), fluctuation
caused by other constraints and external information help
problem-solvers escape from it.
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